Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 157
Filter
1.
Curr Opin HIV AIDS ; 19(3): 110-115, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38457193

ABSTRACT

PURPOSE OF REVIEW: Elite controllers (ECs) and Posttreatment controllers (PTCs) represent a small subset of individuals who are capable of maintaining drug-free control of HIV plasma viral loads despite the persistence of a replication-competent viral reservoir. This review aims to curate recent experimental studies evaluating viral reservoirs that distinguish EC/PTC and may contribute to their ability to maintain undetectable viral loads in the absence of antiretroviral therapy. RECENT FINDINGS: Recent studies on ECs have demonstrated that integration sites of intact proviruses in EC/PTC are markedly biased towards heterochromatin regions; in contrast, intact proviruses in accessible and permissive chromatin were profoundly underrepresented. Of note, no such biases were noted when CD4 + T cells from EC were infected directly ex vivo, suggesting that the viral reservoir profile in EC is not related to altered integration site preferences during acute infection, but instead represents the result of immune-mediated selection mechanisms that can eliminate proviruses in transcriptionally-active euchromatin regions while promoting preferential persistence of intact proviruses in nonpermissive genome regions. Proviral transcription in such "blocked and locked" regions may be restricted through epigenetic mechanisms, protecting them from immune-recognition but presumably limiting their ability to drive viral rebound. While the exact immune mechanisms driving this selection process remain undefined, recent single-cell analytic approaches support the hypothesis that HIV reservoir cells are subject to immune selection pressure by host factors. SUMMARY: A "blocked and locked" viral reservoir profile may constitute a structural virological correlate of a functional cure of HIV-1 infection. Further research into the immunological mechanism promoting HIV-1 reservoir selection and evolution in EC/PTC is warranted and could inform foreseeable cure strategies.


Subject(s)
HIV Infections , HIV-1 , Humans , HIV-1/genetics , Proviruses/genetics , Virus Replication , CD4-Positive T-Lymphocytes , Virus Integration , Viral Load , Virus Latency
2.
J Clin Invest ; 134(8)2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38376918

ABSTRACT

BACKGROUNDPersistent controllers (PCs) maintain antiretroviral-free HIV-1 control indefinitely over time, while transient controllers (TCs) eventually lose virological control. It is essential to characterize the quality of the HIV reservoir in terms of these phenotypes in order to identify the factors that lead to HIV progression and to open new avenues toward an HIV cure.METHODSThe characterization of HIV-1 reservoir from peripheral blood mononuclear cells was performed using next-generation sequencing techniques, such as full-length individual and matched integration site proviral sequencing (FLIP-Seq; MIP-Seq).RESULTSPCs and TCs, before losing virological control, presented significantly lower total, intact, and defective proviruses compared with those of participants on antiretroviral therapy (ART). No differences were found in total and defective proviruses between PCs and TCs. However, intact provirus levels were lower in PCs compared with TCs; indeed the intact/defective HIV-DNA ratio was significantly higher in TCs. Clonally expanded intact proviruses were found only in PCs and located in centromeric satellite DNA or zinc-finger genes, both associated with heterochromatin features. In contrast, sampled intact proviruses were located in permissive genic euchromatic positions in TCs.CONCLUSIONSThese results suggest the need for, and can give guidance to, the design of future research to identify a distinct proviral landscape that may be associated with the persistent control of HIV-1 without ART.FUNDINGInstituto de Salud Carlos III (FI17/00186, FI19/00083, MV20/00057, PI18/01532, PI19/01127 and PI22/01796), Gilead Fellowships (GLD22/00147). NIH grants AI155171, AI116228, AI078799, HL134539, DA047034, MH134823, amfAR ARCHE and the Bill and Melinda Gates Foundation.


Subject(s)
HIV Infections , HIV-1 , Humans , HIV-1/genetics , Leukocytes, Mononuclear , Proviruses/genetics , HIV Infections/drug therapy , Anti-Retroviral Agents/therapeutic use
3.
Nat Rev Microbiol ; 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38337034

ABSTRACT

Successful approaches for eradication or cure of HIV-1 infection are likely to include immunological mechanisms, but remarkably little is known about how human immune responses can recognize and interact with the few HIV-1-infected cells that harbour genome-intact viral DNA, persist long term despite antiretroviral therapy and represent the main barrier to a cure. For a long time regarded as being completely shielded from host immune responses due to viral latency, these cells do, on closer examination with single-cell analytic techniques, display discrete footprints of immune selection, implying that human immune responses may be able to effectively engage and target at least some of these cells. The failure to eliminate rebound-competent virally infected cells in the majority of persons likely reflects the evolution of a highly selected pool of reservoir cells that are effectively camouflaged from immune recognition or rely on sophisticated approaches for resisting immune-mediated killing. Understanding the fine-tuned interplay between host immune responses and viral reservoir cells will help to design improved interventions that exploit the immunological vulnerabilities of HIV-1 reservoir cells.

4.
Cell ; 187(5): 1238-1254.e14, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38367616

ABSTRACT

CD4+ T cells with latent HIV-1 infection persist despite treatment with antiretroviral agents and represent the main barrier to a cure of HIV-1 infection. Pharmacological disruption of viral latency may expose HIV-1-infected cells to host immune activity, but the clinical efficacy of latency-reversing agents for reducing HIV-1 persistence remains to be proven. Here, we show in a randomized-controlled human clinical trial that the histone deacetylase inhibitor panobinostat, when administered in combination with pegylated interferon-α2a, induces a structural transformation of the HIV-1 reservoir cell pool, characterized by a disproportionate overrepresentation of HIV-1 proviruses integrated in ZNF genes and in chromatin regions with reduced H3K27ac marks, the molecular target sites for panobinostat. By contrast, proviruses near H3K27ac marks were actively selected against, likely due to increased susceptibility to panobinostat. These data suggest that latency-reversing treatment can increase the immunological vulnerability of HIV-1 reservoir cells and accelerate the selection of epigenetically privileged HIV-1 proviruses.


Subject(s)
HIV Infections , HIV-1 , Histone Deacetylase Inhibitors , Interferon-alpha , Panobinostat , Proviruses , Humans , HIV Infections/drug therapy , HIV-1/genetics , Panobinostat/therapeutic use , Proviruses/drug effects , Virus Latency , Histone Deacetylase Inhibitors/therapeutic use , Interferon-alpha/therapeutic use
5.
J Exp Med ; 221(3)2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38345557

ABSTRACT

Proliferation of HIV-1-infected cells contributes to viral persistence despite antiretroviral therapy. A new study by Kufera et al. (https://doi.org/10.1084/jem.20231511) demonstrates that proliferative growth of cells infected with genome-intact HIV-1 is not limitless; rather, these cells seem to be at least partially refractory to TCR stimulation, restricting their ability to proliferate in response to antigenic challenge.


Subject(s)
HIV Infections , HIV-1 , Humans , CD4-Positive T-Lymphocytes , Delusions , Cell Proliferation , Virus Replication
6.
AIDS ; 38(3): 309-316, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37916471

ABSTRACT

BACKGROUND: Compared with HIV-1 infection, HIV-2 infection is associated with a slower progression to AIDS. Understanding the persistence of HIV-2 infection might inform the mechanisms responsible for differences in the pathogenicity of HIV-2 versus HIV-1. METHODS: In this study, we analyzed the genetic composition of the proviral reservoir in archived blood samples collected from 13 untreated HIV-2-infected adults from Senegal. We used single-genome, near-full-length individual proviral sequencing (FLIP-Seq) to assess the relative frequency of intact and defective proviruses. RESULTS: Ten out of 13 (77%) study participants demonstrated virologic suppression (<90 HIV RNA copies/ml) while the remaining 3 (23%) had detectable HIV RNA. We obtained 363 proviral sequences from peripheral blood mononuclear cells (PBMCs) from the 13 study participants. Within these sequences, 342 (94%) defective proviruses were detected. Twenty-one (6%) intact proviruses were detected from three study participants, with one study participant displaying a large clone consisting of 16 genome-intact sequences. CONCLUSION: This data suggests that similar to HIV-1 infection, the proviral landscape of HIV-2 is dominated by defective proviruses.


Subject(s)
HIV Infections , Proviruses , Adult , Humans , Proviruses/genetics , HIV-2/genetics , Leukocytes, Mononuclear , Viral Load , RNA , CD4-Positive T-Lymphocytes
7.
Cell Rep ; 42(12): 113530, 2023 12 26.
Article in English | MEDLINE | ID: mdl-38048223

ABSTRACT

As the principal effector cell population of the innate immune system, natural killer (NK) cells may make critical contributions to natural, immune-mediated control of HIV-1 replication. Using genome-wide assessments of activating and inhibitory chromatin features, we demonstrate here that cytotoxic NK (cNK) cells from elite controllers (ECs) display elevated activating histone modifications at the interleukin 2 (IL-2)/IL-15 receptor ß chain and the BCL2 gene loci. These histone changes translate into increased responsiveness of cNK cells to paracrine IL-15 secretion, which coincides with higher levels of IL-15 transcription by myeloid dendritic cells in ECs. The distinct immune crosstalk between these innate immune cell populations results in improved IL-15-dependent cNK cell survival and cytotoxicity, paired with a metabolic profile biased toward IL-15-mediated glycolytic activities. Together, these results suggest that cNK cells from ECs display a programmed IL-15 response signature and support the emerging role of innate immune pathways in natural, drug-free control of HIV-1.


Subject(s)
HIV Infections , HIV Seropositivity , HIV-1 , Humans , Interleukin-15 , Killer Cells, Natural , Dendritic Cells/metabolism , Elite Controllers
8.
Nat Med ; 29(12): 3212-3223, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37957382

ABSTRACT

Non-suppressible HIV-1 viremia (NSV) is defined as persistent low-level viremia on antiretroviral therapy (ART) without evidence of ART non-adherence or significant drug resistance. Unraveling the mechanisms behind NSV would broaden our understanding of HIV-1 persistence. Here we analyzed plasma virus sequences in eight ART-treated individuals with NSV (88% male) and show that they are composed of large clones without evidence of viral evolution over time in those with longitudinal samples. We defined proviruses that match plasma HIV-1 RNA sequences as 'producer proviruses', and those that did not as 'non-producer proviruses'. Non-suppressible viremia arose from expanded clones of producer proviruses that were significantly larger than the genome-intact proviral reservoir of ART-suppressed individuals. Integration sites of producer proviruses were enriched in proximity to the activating H3K36me3 epigenetic mark. CD4+ T cells from participants with NSV demonstrated upregulation of anti-apoptotic genes and downregulation of pro-apoptotic and type I/II interferon-related pathways. Furthermore, participants with NSV showed significantly lower HIV-specific CD8+ T cell responses compared with untreated viremic controllers with similar viral loads. We identified potential critical host and viral mediators of NSV that may represent targets to disrupt HIV-1 persistence.


Subject(s)
HIV Infections , HIV Seropositivity , HIV-1 , Humans , Male , Female , HIV-1/genetics , Viremia , Proviruses/genetics , Proviruses/metabolism , HIV Infections/drug therapy , CD4-Positive T-Lymphocytes , RNA, Viral , Viral Load
9.
Elife ; 122023 11 08.
Article in English | MEDLINE | ID: mdl-37938115

ABSTRACT

HIV-1 reservoir cells that circulate in peripheral blood during suppressive antiretroviral therapy (ART) have been well characterized, but little is known about the dissemination of HIV-1-infected cells across multiple anatomical tissues, especially the CNS. Here, we performed single-genome, near full-length HIV-1 next-generation sequencing to evaluate the proviral landscape in distinct anatomical compartments, including multiple CNS tissues, from 3 ART-treated participants at autopsy. While lymph nodes and, to a lesser extent, gastrointestinal and genitourinary tissues represented tissue hotspots for the persistence of intact proviruses, we also observed intact proviruses in CNS tissue sections, particularly in the basal ganglia. Multi-compartment dissemination of clonal intact and defective proviral sequences occurred across multiple anatomical tissues, including the CNS, and evidence for the clonal proliferation of HIV-1-infected cells was found in the basal ganglia, in the frontal lobe, in the thalamus and in periventricular white matter. Deep analysis of HIV-1 reservoirs in distinct tissues will be informative for advancing HIV-1 cure strategies.


Approximately 39 million people in the world live with HIV infection. Currently available treatments can reduce the amount of virus to near undetectable levels. But they do not eliminate the virus. A reservoir of HIV-infected cells persists during treatment. If treatment stops, these cells can cause rebounding virus levels and a return of symptoms. As a result, patients living with HIV must remain on treatment their entire lives. HIV reservoir cells often do not express viral proteins, making them hard for the immune system to find and destroy. Many of these reservoir cells occur in lymph nodes, which makes them difficult for researchers to access for study. Learning more about where these cells hide in the body may enable scientists to develop new treatments to help eliminate them. Sun et al. show that HIV reservoir cells exist in many body tissues, including the brain. In the experiments, Sun et al. used single HIV genome sequencing to identify HIV genetic sequences in the brain and other body tissues from three recently deceased individuals with HIV. The individuals agreed to donate their tissues for postmortem studies before their deaths. All received antiretroviral therapy until death. The experiments identified functional HIV genetic sequences in lymph nodes and gastrointestinal tissues, known hotspots for HIV-infected cells. Sun et al. also found genetically intact HIV in brain tissue from two of the individuals. The HIV genetic sequences were identical to sequences found in other body tissues. This discovery suggests HIV-infected cells had divided into more HIV-infected cells and spread. The results suggest that cells harboring intact HIV invade the brain and persist there for extended periods during antiretroviral therapy. To eradicate the virus, interventions targeting HIV reservoir cells must be able to reach the brain. This new information may help researchers developing HIV-reservoir targeting drugs decide which candidates will likely be the most effective. Future studies may also shed light on how HIV reaches the brain and how the infected cells escape destruction by immune cells, which may suggest more treatment strategies.


Subject(s)
HIV Infections , HIV-1 , Humans , HIV-1/genetics , Proviruses/genetics , Brain , Basal Ganglia , HIV Infections/drug therapy
10.
Cell Host Microbe ; 31(10): 1714-1731.e9, 2023 10 11.
Article in English | MEDLINE | ID: mdl-37751747

ABSTRACT

Although gut and lymph node (LN) memory CD4 T cells represent major HIV and simian immunodeficiency virus (SIV) tissue reservoirs, the study of the role of dendritic cells (DCs) in HIV persistence has long been limited to the blood due to difficulties to access lymphoid tissue samples. In this study, we show that LN migratory and resident DC subpopulations harbor distinct phenotypic and transcriptomic profiles. Interestingly, both LN DC subpopulations contain HIV intact provirus and inducible replication-competent HIV despite the expression of the antiviral restriction factor SAMHD1. Notably, LN DC subpopulations isolated from HIV-infected individuals treated for up to 14 years are transcriptionally silent but harbor replication-competent virus that can be induced upon TLR7/8 stimulation. Taken together, these results uncover a potential important contribution of LN DCs to HIV infection in the presence of ART.


Subject(s)
HIV Infections , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Humans , CD4-Positive T-Lymphocytes , Anti-Retroviral Agents/therapeutic use , Lymph Nodes , Dendritic Cells
11.
Sci Transl Med ; 15(703): eadh0004, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37406137

ABSTRACT

Broadly neutralizing antibodies (bNAbs) may provide an alternative to standard antiretroviral treatment (ART) for controlling HIV-1 replication and may have immunotherapeutic effects against HIV-1 reservoirs. We conducted a prospective clinical trial with two HIV-1 bNAbs (VRC01LS and 10-1074) in children (n = 25) who had previously initiated small-molecule ART treatment before 7 days of age and who continued treatment for at least 96 weeks. Both bNAbs were dosed intravenously every 4 weeks, overlapping with ART for at least 8 weeks and then continued for up to 24 weeks or until detectable viremia of HIV-1 RNA rose above 400 copies per milliliter in the absence of ART. Eleven (44%) children maintained HIV-1 RNA below 400 copies per milliliter through 24 weeks of bNAb-only treatment; 14 (56%) had detectable viremia above 400 copies per milliliter at a median of 4 weeks. Archived HIV-1 provirus susceptible to 10-1074, lower birth HIV-1 DNA reservoir in peripheral blood mononuclear cells, sustained viral suppression throughout early life, and combined negative qualitative HIV-1 DNA polymerase chain reaction and negative HIV-1 serology at entry were associated with maintaining suppression on bNAbs alone. This proof-of-concept study suggests that bNAbs may represent a promising treatment modality for infants and children living with HIV-1. Future studies using newer bNAb combinations with greater breadth and potency are warranted.


Subject(s)
HIV Infections , HIV-1 , Child , Humans , Anti-Retroviral Agents/therapeutic use , Antibodies, Neutralizing , Botswana , Broadly Neutralizing Antibodies/therapeutic use , HIV Antibodies , Leukocytes, Mononuclear , Prospective Studies , Viremia/drug therapy
12.
iScience ; 26(7): 107214, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37456859

ABSTRACT

Some HIV controllers experience immunologic progression with CD4+ T cell decline. We aimed to identify genetic factors associated with CD4+ T cell lost in HIV controllers. A total of 561 HIV controllers were included, 442 and 119 from the International HIV controllers Study Cohort and the Swiss HIV Cohort Study, respectively. No SNP or gene was associated with the long-term non-progressor HIV spontaneous control phenotype in the individual GWAS or in the meta-analysis. However, SNPs previously associated with natural HIV control linked to HLA-B (rs2395029 [p = 0.005; OR = 1.70], rs59440261 [p = 0.003; OR = 1.78]), MICA (rs112243036 [p = 0.011; OR = 1.45]), and PSORS1C1 loci (rs3815087 [p = 0.017; OR = 1.39]) showed nominal association with this phenotype. Genetic factors associated with the long-term HIV controllers without risk of immunologic progression are those previously related to the overall HIV controller phenotype.

13.
bioRxiv ; 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37425847

ABSTRACT

HIV-1 reservoir cells that circulate in peripheral blood during suppressive antiretroviral therapy (ART) have been well characterized, but little is known about the dissemination of HIV-1-infected cells across multiple anatomical tissues, especially the central nervous system (CNS). Here, we performed single-genome, near full-length HIV-1 next-generation sequencing to evaluate the proviral landscape in distinct anatomical compartments, including multiple CNS tissues, from 3 ART-treated participants at autopsy. While lymph nodes and, to a lesser extent, gastrointestinal and genitourinary tissues represented tissue hotspots for the persistence of intact proviruses, we also observed intact proviruses in CNS tissue sections, particularly in the basal ganglia. Multi-compartment dissemination of clonal intact and defective proviral sequences occurred across multiple anatomical tissues, including the CNS, and evidence for the clonal proliferation of HIV-1-infected cells was found in the basal ganglia, in the frontal lobe, in the thalamus and in periventricular white matter. Deep analysis of HIV-1 reservoirs in distinct tissues will be informative for advancing HIV-1 cure strategies.

14.
Cell Rep ; 42(6): 112630, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37300833

ABSTRACT

Although therapeutic B cell depletion dramatically resolves inflammation in many diseases in which antibodies appear not to play a central role, distinct extrafollicular pathogenic B cell subsets that accumulate in disease lesions have hitherto not been identified. The circulating immunoglobulin D (IgD)-CD27-CXCR5-CD11c+ DN2 B cell subset has been previously studied in some autoimmune diseases. A distinct IgD-CD27-CXCR5-CD11c- DN3 B cell subset accumulates in the blood both in IgG4-related disease, an autoimmune disease in which inflammation and fibrosis can be reversed by B cell depletion, and in severe COVID-19. These DN3 B cells prominently accumulate in the end organs of IgG4-related disease and in lung lesions in COVID-19, and double-negative B cells prominently cluster with CD4+ T cells in these lesions. Extrafollicular DN3 B cells may participate in tissue inflammation and fibrosis in autoimmune fibrotic diseases, as well as in COVID-19.


Subject(s)
B-Lymphocyte Subsets , COVID-19 , Immunoglobulin G4-Related Disease , Humans , Fibrosis , Immunoglobulin D , Inflammation , Receptors, CXCR5 , B-Lymphocyte Subsets/metabolism , B-Lymphocyte Subsets/pathology
15.
J Infect Dis ; 228(3): 281-286, 2023 08 11.
Article in English | MEDLINE | ID: mdl-37201510

ABSTRACT

Immune mechanisms that modulate human immunodeficiency virus-1 (HIV-1) reservoir size in neonates are poorly understood. Using samples from neonates who initiated antiretroviral therapy shortly after birth, we demonstrate that interleukin-8-secreting CD4 T cells, which are selectively expanded in early infancy, are more resistant to HIV-1 infection and inversely correlated with the frequency of intact proviruses at birth. Moreover, newborns with HIV-1 infection displayed a distinct B-cell profile at birth, with reduction of memory B cells and expansion of plasmablasts and transitional B cells; however, B-cell immune perturbations were unrelated to HIV-1 reservoir size and normalized after initiation of antiretroviral therapy. Clinical Trials Registration. NCT02369406.


Subject(s)
HIV Infections , HIV-1 , Humans , Infant, Newborn , Anti-Retroviral Agents/therapeutic use , Proviruses , CD4-Positive T-Lymphocytes , Viral Load
16.
Article in English | MEDLINE | ID: mdl-37126090

ABSTRACT

Since the first HIV-cured person was reported in 2009, a strong interest in developing highly sensitive HIV and SIV reservoir assays has emerged. In particular, the question arose about the comparative value of state-of-the-art assays to measure and characterize the HIV reservoir, and how these assays can be applied to accurately detect changes in the reservoir during efforts to develop a cure for HIV infection. Second, it is important to consider the impact on the outcome of clinical trials if these relatively new HIV reservoir assays are incorporated into clinical trial endpoints and/or used for clinical decision-making. To understand the advantages and limitations and the regulatory implications of HIV reservoir assays, the National Institute of Allergy and Infectious Diseases (NIAID) sponsored and convened a meeting on September 16, 2022, to discuss the state of knowledge concerning these questions and best practices for selecting HIV reservoir assays for a particular research question or clinical trial protocol.

17.
Med ; 4(5): 285-287, 2023 05 12.
Article in English | MEDLINE | ID: mdl-37178680

ABSTRACT

A cure of HIV-1 infection has previously been described in two individuals undergoing allogeneic hematopoietic stem cell transplants from homozygous carriers of the CCR5Δ32 gene variant, which confers HIV-1 resistance. Two recent reports corroborate these earlier studies, underscoring that in HIV-1-infected persons with hematologic malignancies, these procedures may provide a realistic perspective for a cure of HIV-1 infection.


Subject(s)
HIV Infections , HIV Seropositivity , HIV-1 , Hematologic Neoplasms , Hematopoietic Stem Cell Transplantation , Humans , HIV-1/genetics , HIV Infections/therapy , HIV Infections/genetics , Hematopoietic Stem Cell Transplantation/methods
18.
medRxiv ; 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37034605

ABSTRACT

Non-suppressible HIV-1 viremia (NSV) can occur in persons with HIV despite adherence to combination antiretroviral therapy (ART) and in the absence of significant drug resistance. Here, we show that plasma NSV sequences are comprised primarily of large clones without evidence of viral evolution over time. We defined proviruses that contribute to plasma viremia as "producer", and those that did not as "non-producer". Compared to ART-suppressed individuals, NSV participants had a significantly larger producer reservoir. Producer proviruses were enriched in chromosome 19 and in proximity to the activating H3K36me3 epigenetic mark. CD4+ cells from NSV participants demonstrated upregulation of anti-apoptotic genes and downregulation of pro-apoptotic and type I/II interferon-related pathways. Furthermore, NSV participants showed no elevation in HIV-specific CD8+ cell responses and producer proviruses were enriched for HLA escape mutations. We identified critical host and viral mediators of NSV that represent potential targets to disrupt HIV persistence and promote viral silencing.

19.
Biomedicines ; 11(3)2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36979867

ABSTRACT

Most of the current assays directed at the investigation of HIV reactivation are based on cultures of infected cells such as Peripheral Blood Mononuclear Cells (PBMCs) or isolated CD4+ T cells, stimulated in vitro with different activator molecules. The culture media in these in vitro tests lack many age- and donor-specific immunomodulatory components normally found within the autologous plasma. This triggered our interest in understanding the impact that different matrices and cell types have on T cell transcriptional profiles following in vitro culture and stimulation. METHODS: Unstimulated or stimulated CD4+ T cells of three young adults with perinatal HIV-infection were isolated from PBMCs before or after culture in RPMI medium or autologous plasma. Transcriptomes were sequenced using Oxford Nanopore technologies. RESULTS: Transcriptional profiles revealed the activation of similar pathways upon stimulation in both media with a higher magnitude of TCR cascade activation in CD4+ lymphocytes cultured in RPMI. CONCLUSIONS: These results suggest that for studies aiming at quantifying the magnitude of biological mechanisms under T cell activation, the autologous plasma could better approximate the in vivo environment. Conversely, if the study aims at defining qualitative aspects, then RPMI culture could provide more evident results.

20.
J Acquir Immune Defic Syndr ; 92(5): 393-398, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36729692

ABSTRACT

BACKGROUND: Early antiretroviral treatment (ART) improves outcomes in children, but few studies have comprehensively evaluated the impact of ART started from the first week of life. METHODS: Children diagnosed with HIV within 96 hours of life were enrolled into the Early Infant Treatment Study in Botswana and followed on ART for 96 weeks. Nevirapine, zidovudine, and lamivudine were initiated; nevirapine was switched to lopinavir/ritonavir between weeks 2-5 in accordance with gestational age. Clinical and laboratory evaluations occurred at weeks 1, 2, 4, 8, 12, 24, 36, 48, 60, 72, 84, and 96. FINDINGS: Forty children initiated ART at a median of 2 (IQR 2, 3) days of life; 38 (95%) completed follow-up through 96 weeks, and 2 (5%) died between 12 and 24 weeks. ART was well tolerated; 9 children (24%) experienced a grade 3 or 4 hematologic event, and 2 (5%) required treatment modification for anemia. The median 96-week CD4 count was 1625 (IQR 1179, 2493) cells/mm 3 with only 5/38 (13%) having absolute counts <1000 cells/mm 3 . Although 23 (61%) had at least one visit with HIV-1 RNA ≥40 copies/mL at or after 24 weeks, 28 (74%) had HIV-1 RNA <40 copies/mL at the 96-week visit. Median cell-associated HIV-1 DNA at 84/96-week PBMCs was 1.9 (IQR 1.0, 2.6) log 10 copies/10 6 cells. Pre-ART reservoir size at birth was predictive of the viral reservoir at 84/96 weeks. INTERPRETATION: Initiation of ART in the first week of life led to favorable clinical outcomes, preserved CD4 cell counts, and low viral reservoir through 96 weeks of life.


Subject(s)
Anti-HIV Agents , HIV Infections , HIV-1 , Humans , Infant , Infant, Newborn , Anti-HIV Agents/therapeutic use , Anti-Retroviral Agents/therapeutic use , Botswana , CD4 Lymphocyte Count , Lopinavir/therapeutic use , Nevirapine/therapeutic use , RNA/therapeutic use , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL
...